ISPN
Visitors
76076
September
21
Journals A - Z
A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    ALL
All Volumes

Multiple Gross Errors Detection in Surveying Measurements Using Statistical Quality Control

How to cite

Badria A. Gissmalla Elgazooli ,Ahmed M. Ibrahim ,2012, Multiple Gross Errors Detection in Surveying Measurements Using Statistical Quality Control,Journal of Science and Technology,13 (1) ,pp:37-47

Authors:
By Badria A. Gissmalla Elgazooli ,Ahmed M. Ibrahim ,
Year:
2012
Keywords
Statistical Control Charts, Variables Control Charts, Attribute Control Charts, Probability, Statistical Quality Control
Abstract
Most of the surveying tasks involve the acquisition and analysis of measurements. Such measurements are subject to random, systematic and gross errors. In practice, redundant measurements are made to provide quality control and errors check. In qualitative analysis and statistical evaluation, it is generally assumed that the measurements contain only random errors and are regarded as random variables. In reality, the measurements may contain gross and/or systematic errors. The effects of such errors are distributed over the residuals, after an adjustment and lead to questionable results and interpretation. For high precision applications, gross and systematic errors need to be detected prior to the analysis. These errors should be tackled before the adjustment by means of screening. These few remaining gross errors in the measurements can be detected after the adjustment. These adjustment methods assume the presence of only one gross error. One of the most effective methods that can be used in detecting multiple gross errors is the statistical quality control method. Statistical quality control is a technique used to monitor a procedure with a goal of making it more efficient and ensures precise results. Statistical control charts are used to provide an operational definition of a special cause for a given set of data. It is possible to construct multiples of sigma control limits. When all the points on a control chart are within a multiple of sigma control limits and there are no gross errors in the data, the process of measurements is said to be in a state of statistical control. Otherwise, the data indicate the presence of non-random gross errors. In this research work, different methods of statistical quality control were used. Results showed that statistical quality
الملخص
كثير من المهام المساحية تتطلب الحصول على القياسات وتحليلها. تخضع تلك القياسات للأخطاء الجسيمة ، المنتظمة والعشوائية. عملياً هنالك أرصادات زائدة من أجل الوصول الى قيم مضبوطه والمساعدة فى اكتشاف الأخطاء. فى التحليل النوعى والتحليل الإحصائى من أجل الجودة ،عادةً مايفترض أن القياسات تحتوى على أخطاء عشوائية فقط واعتبارها متغيراتٍ عشوائية. فى الحقيقة تلك القياسات يمكن أن تحتوى على أخطاء جسيمة بالاضافه الى أخطاء منتظمة. تأثير هذه الأخطاء يتوزع على الأخطاء المتبقية بعد إجراء عملية الضبط مما تؤدى بدورها الى إثارة الاسئلة حول نتائجها وتفسيرها.
References:
  1. Djayeola, M. and Rittenau, R, (2006). Experiencing the Simper Validation Software: Genuine African solutions for data validation within the International Comparison Program, African Statistical Journal Vol 3
  2. Adam, A. November (2007). Data Quality Issues in Surveys of the International Comparison Program for Africa (ICP-Africa). The African Statistical Journal, Vol 5
  3. Ibrahim, A. M. (1995), Reliability Analysis of Combined GPS-Aerial Triangulation System, Ph. D.Thesis, Newcastle University, England
  4. Stefanovic, P. (1984) Error Treatment in Photogrammetric Digital Techniques, International Archives of Photogrammetry and Remote Sensing
  5. Cross, P.A., Chen, W & TU, Y. (1993), Ambiguity Resolution for Rapid GPS Relative positioning, Proceedings of the 10th Conference of South African Surveyors, Sun City
  6. Gao, Y., Krakiwsky, E.J. and Czompo, J. (1992). Robust Testing Procedure for Detection of Multiple Blunders, Journal of Surveying Engineering, Vol.(118), Number(1)
  7. Rosenberg, J., Mah, R. S. H., and Iordache, C. (1987), Evaluation of Schemes for Detecting and Identification of Gross Errors in process Data,Industrial & Engineering Chemistry Proceedings, Vol. (26).
  8. Liese, Friedrich and Miescke, Klaus-J. (2008). Statistical Decision Theory: Estimation, Testing, and Selection. Springer. ISBN 0387731938
  9. Montgomery, D.C. (1996), Introduction to Statistical Quality Control, 3rd. ed., John Wiley &Sons, New York
  10. Juran, J.M. (1997), Early SQC: A Historical Supplement, Quality Progress Vol. (30), Number(9)
  11. Kim D, Langley RB. (2001), Quality Control Techniques and Issues in GPS Applications: Stochastic Modelling and Reliability Test, Proceedings of the 2001 International Symposium on GPS/GNSS (The 8th GNSS Workshop), Jeju Island, Korea, 7-9 November 2001
  12. Kim D, and Langley RB. (2002), Instantaneous Real-Time Cycle-Slip Correction for Quality Control of GPS Carrier-phase Measurements, Navigation, 49(4), 205-222
  13. Nancy R. Tague. (2004). "Seven Basic Quality Tools". The Quality Toolbox. Milwaukee, Wisconsin: American Society for Quality.p. 15.http://www.asq.org/learn -about-quality/seven-basic-qualitytools/overview/overview.html. Retrieved 2012-05-02
  14. Upton, G., Cook, I. (2008) Oxford Dictionary of Statistics, OUP. ISBN 978-0-19-954145-4
  15. Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9 (entry for "inferential statistics")
  16. Montgomery.D.C. & Runger, G.C. (1999), Applied Statistics and Probability for Engineers, 2nd ed., John Wiley & Sons, New York
  17. http://www.itl.nist.gov/div898/handbo ok/pmc/section1/pmc12.htm.Retriered 02.05.2012
» Download Full Text: